Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Osiński, Marek; Arakawa, Yasuhiko; Witzigmann, Bernd (Ed.)Superconducting nanostripe single-photon detectors (SNSPDs) represent key components in silicon quantum photonic integrated circuits (SiQuPICs). They provide good timing precision, low dark counts, and high efficiency. The design, fabrication, and characterization of SiQuPICs comprising SNSPDs coupled to dielectric optical waveguides are the core objectives of our work. The detectors are positioned directly on the dielectric waveguide core to increase photon absorption by the superconducting nanostripes. We also present results on the SPICE circuit modeling of traveling-wave SNSPDs integrated with Si3N4/SiO2 optical waveguides.more » « less
-
We report on design, fabrication, and characterization of silicon quantum photonic integrated circuits comprising superconducting nanostripe single-photon detectors integrated with dielectric optical waveguides. In order to enhance absorption of photons by the superconducting nanostripes, the detectors are located directly on the dielectric waveguide core.more » « less
-
Raymer, Michael; Monroe, Christopher (Ed.)Design, fabrication, and characterization of superconducting nanostripe single-photon detectors integrated with dielectric optical waveguides is reported, whereby part of the upper cladding is removed to enhance absorption of photons by the superconducting nanostripes.more » « less
-
Abstract Intracellular access with high spatiotemporal resolution can enhance the understanding of how neurons or cardiomyocytes regulate and orchestrate network activity and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly with time. Here, one reports innovative scalable, vertical, ultrasharp nanowire arrays that are individually addressable to enable long‐term, native recordings of intracellular potentials. One reports electrophysiological recordings that are indicative of intracellular access from 3D tissue‐like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. The findings are validated with cross‐sectional microscopy, pharmacology, and electrical interventions. The experiments and simulations demonstrate that the individual electrical addressability of nanowires is necessary for high‐fidelity intracellular electrophysiological recordings. This study advances the understanding of and control over high‐quality multichannel intracellular recordings and paves the way toward predictive, high‐throughput, and low‐cost electrophysiological drug screening platforms.more » « less
An official website of the United States government

Full Text Available